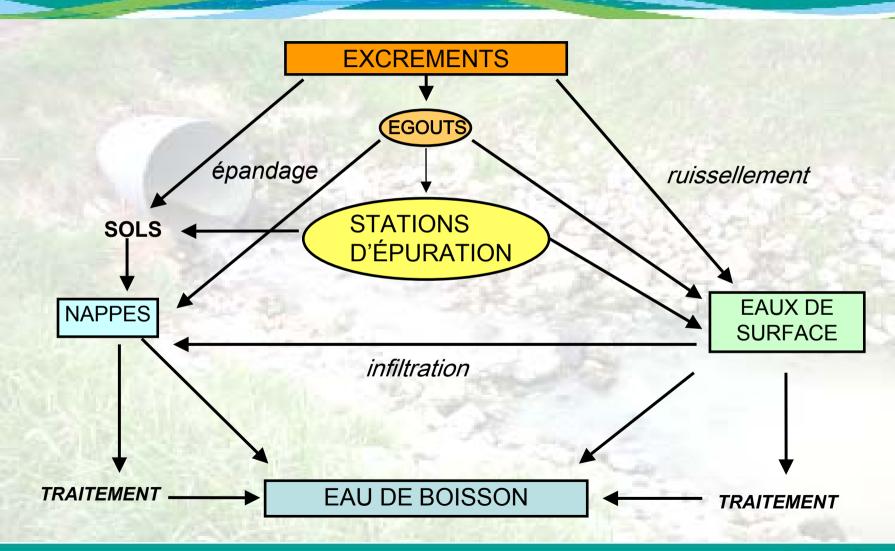
L'EAU DE BOISSON DU VOYAGEUR

Olivier SCHLOSSER
Suez Environnement, CIRSEE
2007

Plan

- Les ressources en eau
- La contamination fécale de l'eau
- Le traitement de l'eau : définitions et principes
- La désinfection
- L'ébullition
- La filtration
- Les ultra-violets
- Le stockage de l'eau
- Conclusion pratique


Ressources en eau pour le voyageur

- Eau en bouteille
 - à recommander si marque connue et bouteille capsulée
 - production locale : préférer les eaux gazeuses
- Eau du robinet
 - qualité variable selon le lieu et dans le temps
 - validité de l'information du voyageur ?
- Eaux de puits, eaux de surface : toujours polluées

Eaux souterraines et eaux de surface

- Gaz dissous (O₂, CO₂), sels minéraux
- Fines particules en suspension
 - → turbidité
 - → adsortion de micro-organimes et molécules
- Matières organiques végétales et microbiennes
 - \rightarrow couleur
- Bactéries hydriques et telluriques
- Pollution microbienne (fécale) et chimique

Origines et modes de contamination fécale des eaux d'alimentation

Micro-organismes d'origine fécale

Réservoir humain et animal Virus : grande spécificité d'hôte +++

- Campylobacter, Shigella, E. coli entérotoxinogènes, E. coli O157:H7, Vibrio cholerae, Salmonella, Yersinia enterocolitica
- Norovirus, Rotavirus, Adenovirus, Enterovirus, Astrovirus, VHA, VHE
- Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Cyclospora

Micro-organismes pathogènes dans l'eau

A part : *Dracunculus medinensis* = ver de Guinée ou filaire de Médine

Risque majeur d'infection d'origine hydrique

Micro-organismes:

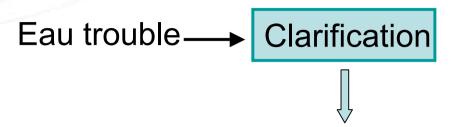
- de dose infectante faible
- résistants dans l'environnement
- de virulence élevée

Deux aspects essentiels

- 1. 90% des micro-organismes sont fixés aux particules en suspension
- 2. Résistance des micro-organismes aux agressions physiques et chimiques :

parasites > virus > bactéries

Stress des bactéries dans l'environnement : résistance 7


Définition : Eau potable

- OMS: eau ne renfermant en quantités dangereuses ni substances chimiques, ni germes nocifs pour la santé; en outre, elle doit être aussi agréable que les circonstances le permettent.
- Code de Santé Publique Art R. 1321-2 : Les eaux destinées à la consommation humaine doivent [...] :
 - ne pas contenir un nombre ou une concentration de microorganismes, de parasites [...] constituant un danger potentiel pour la santé des personnes;
 - être conformes aux limites de qualité définies au I de l'annexe 13-1. [...]

Définitions

- Eau Potable : « eau ne renfermant en quantités dangereuses ni substances chimiques, ni germes nocifs pour la santé ; en outre, elle doit être aussi agréable que les circonstances le permettent » (OMS)
- Désinfection : élimination ou destruction des micro-organismes pathogènes
- Pasteurisation : destruction des micro-organismes pathogènes par la chaleur
- Purification: élimination des polluants organiques et inorganiques et des particules en suspension, responsables d'une coloration de l'eau et de mauvais goûts et odeurs.

Principes et moyens de traitement de l'eau du voyageur

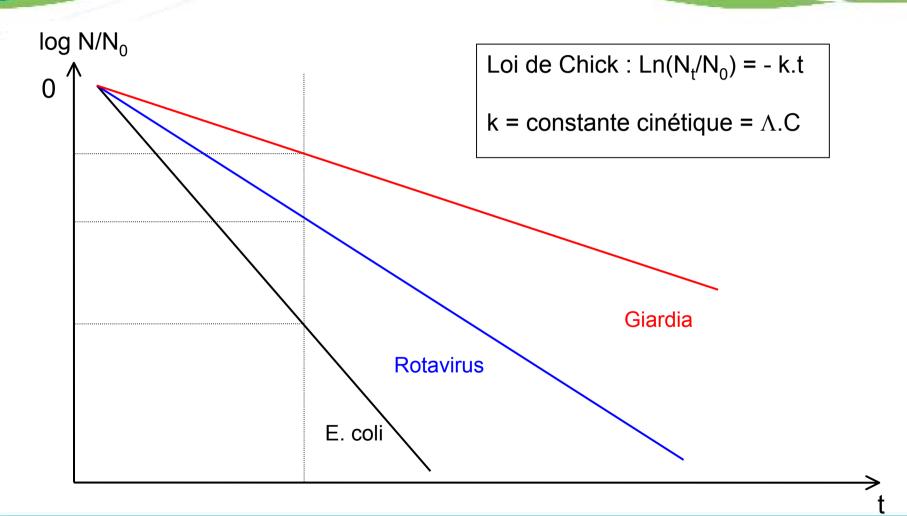
- agents chimiques
- ébullition
- filtres
- sachets utilisant l'osmose
- U.V.

Stockage

Clarifier l'eau

Objectifs :

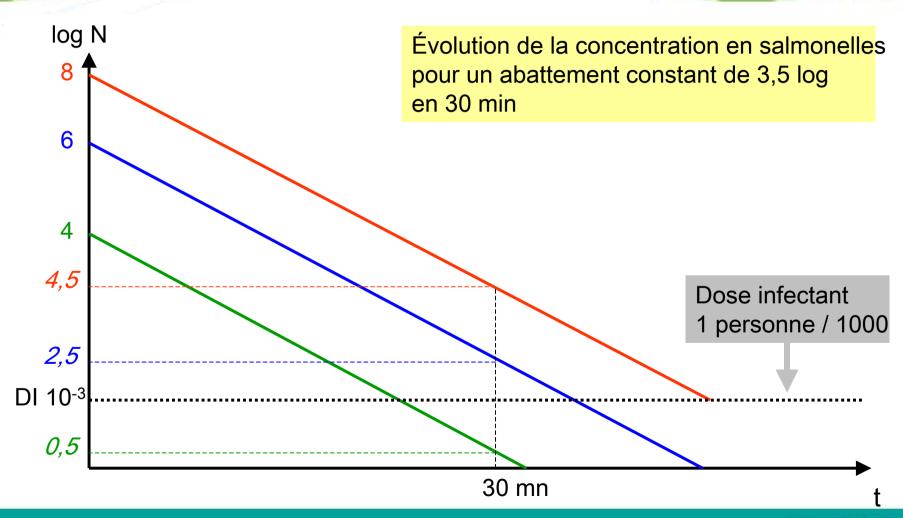
- réduire la masse de matières en suspension et les microorganismes qui y sont fixés
- diminuer l'effet de colmatage des filtres


Moyens:

- soit décantation gravitaire, coagulation (farine, cendres, alun)
- soit pré-filtration sur filtres a café (retient ≥ 60 µm) ou linge propre

La désinfection

- Objectif : destruction des micro-organismes pathogènes (≠stérilisation)
- Efficacité fonction de :
 - nature du micro-organisme
 - concentration de l'agent chimique dans l'eau (résiduel d'oxydant),
 fonction de : réactions chimiques, turbidité, pH
 - température
 - temps de contact
- Mesurée par le C.t pour un objectif d'inactivation donné (99,9%; 99,99%).


Courbes d'inactivation pour une concentration de désinfectant donnée

Valeur du CT (mg.min/l) pour l'inactivation de 99% des micro-organismes à T = 5°C

	Chlore libre	Chloramine	Dioxyde de chlore	Ozone
E. coli	0,034-0,05	95 - 180	0,4-0,75	0,02
Poliovirus	1,1 – 2,5	770 - 3740	0,2-6,7	0,1-0,2
kystes de <i>Giardia</i>	30 - 630	1400	7,2 – 18,5	1,8 – 2,0

Influence du niveau de contamination de l'eau à traiter

Dérivés chlorés

- Hypochlorites
 - hypochlorite de sodium (Eau de Javel)
 - hypochlorite de calcium : en association avec l'ion argent (Micropur Forte®)
- 2. DCCNa = Aquatabs®, Micropur DCCNa®
- 3. Chloramine T = Hydroclonazone®
- 4. MIOX® Purifier = production d'un mélange d'oxydants par électrolyse d'une solution de NaCl

Le DCCNa

Dichloroisocyanurate de sodium = dichloro-s-triazinetrione de sodium

Aquatabs®, laboratoire Medentech; Micropur DCCNa®, Katadyn

Utilisé par : Croix Rouge, Unicef, armées Commercialisé en France en officine (existe pour 1 litre et pour 10 litres)

<u>Avantages</u>:

- comprimés, effervescents
- stabilité > hypochlorite Ca et >> hypochlorite Na
- solution à pH acide
- libération d'acide hypochloreux :
 1 cp de 3,5 mg DCCNa libère 2 mg de chlore libre disponible
- DCCNa = effet réservoir

Dioxyde de chlore

 CIO_2 n'est pas un agent de chloration +++ Non influencé par NH_4^+ . Efficace si pH basique (\neq chlore) Efficacité sur B et V \cong hypochlorite; supérieure sur P

- Aquamira® (McNett),
- Pristine® (Advanced Chemicals)

Micropur Express®, (Katadyn)

L'iode

- En phase liquide :
 - alcool iodé
 - cristal d'iode (Polar Pure®)
 - hydropériodure de tétraglycine (Potable Aqua®, Globaline®)

- En phase solide :
 - résines polyiodées,« en crise » actuellement

En France:

- gourde Bottle Katadyn®
- stocks de produits anciens ?

Alcool iodé 2%

5 gouttes/I ou 10 gouttes/I (eau froide), t = 30 mn (CDC).

- Efficacité comparable au chlore actif :
 - bactéricide +++
 - virucide ++ (non établi pour le VHA)
 - efficace sur les kystes de Giardia (> 99,9% après 8 heures de contact ;
 Onghert 1989)
- Problème : 2 litres d'eau / jour = 20 à 100 fois la dose journalière recommandée d'iode et iodures (150 à 250 μg)
 - → risque de dysthyroïdie, habituellement transitoire

22

Résines poly-iodées

- Désinfection de contact, « organo-activable » : micro-organisme attiré par la résine (forces électrostatiques) qui libère l'iode à son contact.
- Avantage recherché: effet virucide en complément d'une microfiltration.
- Limites : les particules dans l'eau protègent les micro-organismes du contact avec la résine → clarifier +++ ; temps de contact suffisant ?
- Danger ?
 - moins d'iode dans l'eau qu'avec l'alcool iodé
 - effet adsorbant d'une cartouche de charbon actif ou d'une résine ajoutée (mais temps de contact 凶)
 - goitres et dysthyroïdies observées après utilisation prolongée
- Nombreux produits retirés du marché car ne répondant pas aux recommandations de l'US EPA en matière d'abattement sur les virus.

Produits iodés et résines poly-iodées

Prudence +++

- Utilisation seulement ponctuelle
- Contre-indiqués chez :
 - pathologie thyroïdienne
 - femme enceinte
 - antécédents familiaux de pathologie thyroïdienne (thyroïdite)
 - originaire de régions déficitaires en iode

Ion argent

Pénétration Ag + trans-membranaire par transport actif, fixation sur ADN et enzymes

→ ralentissement du métabolisme (effet bactériostatique), effet bactéricide si C élevée

Action lente +++

- en phase liquide : Micropur® (Katadyn), 0,1 mg/l
 - délai d'attente : 2 heures

- efficacité : conservateur d'eau potable plutôt que désinfectant (USEPA)
- avantage : grande stabilité (3 à 6 mois) → intérêt pour réservoirs de campingcar, caravanes, bateaux
- associé à désinfectant : hypochlorite Ca dans Micropur Forte®, DCCNa dans Micropur DCCNa®
- en phase solide : protection des filtres céramiques Katadyn

Produits commercialisés en France

Agents chimiques	Dose	Temps de contact	
Micropur Forte®, Katadyn (Hypochl Ca + Ag)	1 cp/l (2 mg + 0,12 mg)	30 – 120 mn	
Aquatabs®, Medentech (DCCNa)	1 cp 3,5 mg/l	30 mn	
Micropur DCCNa®, Katadyn (<i>DCCNa</i> + <i>Ag</i>)	1cp/l (4,5 mg+0,1 mg)	30 mn (B, V) à 120 mn (P)	
Hydroclonazone ®, Promedica (<i>Tosylchloramide</i> , <i>ou chloramine T</i>)	1 cp 12,2 mg/l	60 à120 mn	
Micropur Express®, Katadyn (dioxyde de chlore)	1 cp/l	15 mn (B, V), 30 mn (P)	
Micropur® MT 1, Katadyn (Ion argent)	1 cp 0,1 mg/l	120 mn	
Alcool iodé à 2%	5 gouttes/l	30 mn	

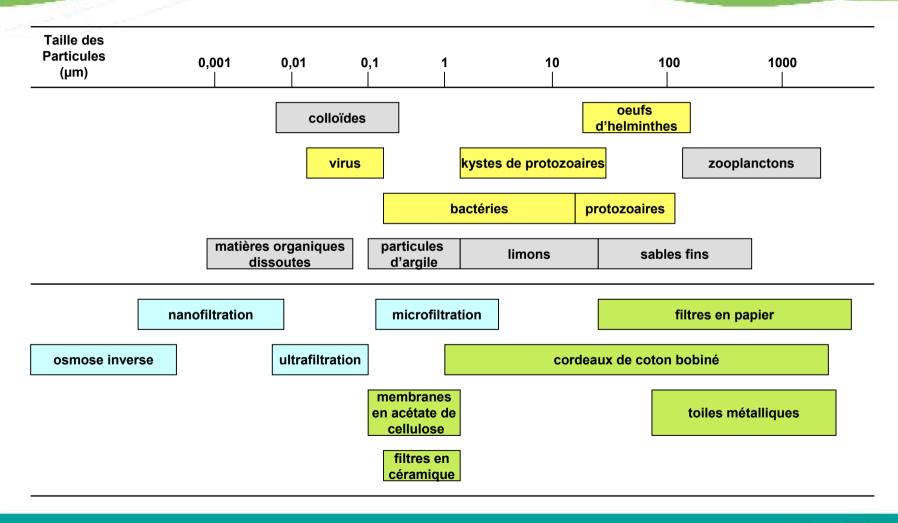
L'ébullition (1)

Obéit à une loi cinétique de type : $ln(N_t/N_0) = -k.t$, à une température donnée et pour un micro-organisme donné

O. Schlosser - L'eau de boisson du voyageur

- Objectif : pasteurisation (≠ stérilisation)
- Question : combien de temps ?
- Fonction de :

SUEZ ENVIRONNEMENT


- nature du micro-organisme (résistance)
- importance de l'inoculum
- dose minimale infectante
- terrain : déficit immunitaire, hypochlorhydrie, grossesse...
- Pas d'action sur le goût, l'odeur et l'apparence

L'ébullition (2)

En pratique :

- recommandations générales, voyageurs immunocompétents :
 - 1 minute, pour inactiver le VHA (CDC, USEPA)
 - norovirus: inactivation FeCV = 99,9% à 71,3°C pendant 1 mn (*Duizer, 2004*)
- recommandations particulières, voyageurs VIH :5 minutes ? (CSHPF)
- cas particulier : en haute altitude, ébullition à < 100°C.
 mais 1 mn d'ébullition suffisant car impact non significatif
- Attention si température extérieure très froide +++ : couvrir le récipient
- Problèmes :
 - disponibilité et coût des sources de chaleur
 - risque de brûlures

Taille des particules dans l'eau et procédés de filtration

Les filtres

Efficacité fonction de :

- niveau de porosité absolue de l'élément filtrant (absolu = 100% de rétention ; nominal = 90% de rétention)
- rétention des micro-organismes par forces électrostatiques
- qualité des autres constituants (joints +++)

Elément filtrant :

- cartouche de céramique (filtres Katadyn, MSR MiniWorks®, ...)
- membrane (PUR Explorer®, PUR Scout®)
- matrice synthétique (First Need Deluxe®, WalkAbout®, Guardian®)
- association céramique + membrane (MSR Water Works Ceramic II®)

Systèmes de filtration

- pompe manuelle
- remplissage gravitaire (filtres fontaine ou siphon Katadyn)
- gourde (Bottle Katadyn®, Aquamira®, ...)
- fixation au robinet (Katadyn Combi®)
- paille (McNett Frontier®, ...)

SUEZ ENVIRONNEMENT

Les filtres (2)

- Choix:
 - porosité absolue < 1 μ m (0,2 à 0,4 μ m +++) = microfiltration : exclut les pailles
 - ± résine poly-iodée
 - pré-filtre, capacité, débit
 - facilité d'entretien
 - + cartouche de charbon actif
- Limites:

SUEZ ENVIRONNEMENT

- virus (→ désinfection post-filtration)
- colmatage
- défaut, incident
- coût à l'achat
- Tests et certification par *NSF International* (http://www.nsf.org), mais seulement pour Cryptosporidium et Giardia
- USA : normes FPA
 - > 6 log bactéries, > 4 log virus, > 3 log cryptosporidium

Les sachets utilisant l'osmose

Ex.: Cellopore Mono® (UCB Films)

- Sachets en membrane de nanofiltration, contenant un mélange de sucre et de sel
- Remplissage par osmose (t = 8 heures)
- En théorie : aucun micro-organisme

Les Ultra Violets

- Nécessite source d'énergie
- Efficace sur B, V, P: altération de l'ADN
- Action gênée par la turbidité : eau claire nécessaire
- Ne génère pas de désinfectant résiduel
- Commercialisé aux USA/Canada : SteriPEN®, Hydro Photon
 - satisfait aux exigences de l'USEPA
 - désinfecte jusqu'à 900 ml d'eau claire

Le stockage de l'eau

- Risque de contamination de l'eau traitée, par :
 - les mains +++
 - les objets (gobelet...)
 - les animaux
- La sécurité repose sur :
 - un récipient adapté :
 - jerrican en polyéthylène transparent
 - interdit l'introduction de la main ou d'ustensiles
 - ouverture de 5 à 8 cm pour remplissage et apport de désinfectant
 - robinet de sortie d'eau, système d'entrée d'air
 - un taux résiduel suffisant de désinfectant ou un conservateur

Résumé

	Particules	Bactéries	Virus	Parasites	Polluants
Coag. / Filtres cafe	é +	+/-	+/-	+/-	+/-
Agents chimiques	0	+++	++	0 ou+/-	0
Ébullition	0	+++	+++	+++	0
Microfiltres	++	+++	+/-*	+++	0
Sachets de nanofiltration	+++	+++	+++	+++	++
Charbon actif	++	0	0	0	++

^{*: +++} avec First Need General Ecology (rétention par forces électrostatiques)

En pratique

Type de voyage	Eau consommée	Traitement de l'eau
Séjours de courte durée, tourisme et affaires, hébergement en hôtel	eau du robinet	 soit désinfection chimique soit microfiltration soit ébullition soit UV
Randonnées, trekking, camping sauvage	eau de surface eau de puits	 Coag /Pré-filtration sur filtres papier puis : soit micro-filtration par filtre ± désinfection soit gourde associant microfiltre et résine iodée soit ébullition, puis conservation avec ion argent si stockage soit UV Sachets de nanofiltration ?
Réservoir de camping- car, caravane, bateau	eau du robinet	conservation avec ion argentmicrofiltration de sortie
Séjours de moyenne et longue durée, expatriation	eau du robinet	Installation à domicile, à l'évier ou à l'arrivée d'eau, d'appareils de microfiltration et/ou de désinfection.